Contents

	Prej	face	page xi	
	Note	ation	xiii	
1	Intro	oduction	1	
	1.1	The importance of lung mechanics	1	
	1.2	Anatomy and physiology	2	
		1.2.1 Gas exchange	2	
		1.2.2 Control of breathing	4	
		1.2.3 Lung mechanics	5	
	1.3	Pathophysiology	6	
		1.3.1 Obstructive lung disease	6	
		1.3.2 Restrictive lung disease	7	
	1.4	How do we assess lung mechanical function?	8	
		1.4.1 Inverse modeling	9	
		1.4.2 Forward modeling	11	
		1.4.3 The modeling hierarchy	12	
		Further reading	14	
2	Collecting data 15			
	2.1	Measurement theory	15	
		2.1.1 Characteristics of transducers	15	
		2.1.2 Digital data acquisition	18	
		2.1.3 The sampling theorem and aliasing	20	
	2.2	Measuring pressure, flow, and volume	22	
		2.2.1 Pressure transducers	22	
		2.2.2 Measuring lateral pressure	23	
		2.2.3 Esophageal pressure	25	
		2.2.4 Alveolar pressure	27	
		2.2.5 Flow transducers	28	
		2.2.6 Volume measurement	30	
		2.2.7 Plethysmography	32	
	2.3	Experimental scenarios	34	
		Problems	35	

viii

3	The linear single-compar	tment model	37
	3.1 Establishing the mo	odel	37
	3.1.1 Model struc	ture	37
	3.1.2 The equatio	n of motion	38
	3.2 Fitting the model to		44
		stimation by least squares	44
		confidence intervals	47
	3.2.3 An example	<u>e</u>	49
	3.2.4 A historical		52
		rameters that change with time	53
		nultiple linear regression	54
	•	h systematic residuals	57
	Problems		61
4	Resistance and elastance		62
	4.1 Physics of airway re	esistance	62
	4.1.1 Viscosity		63
	4.1.2 Laminar and		63
	4.1.3 Poiseuille re		65
	4.1.4 Resistance of	of the airway tree	68
	4.2 Tissue resistance		71
	4.3 Lung elastance		72
	4.3.1 The effect o	_	72
	4.3.2 Surface tens		73
		tance during bronchoconstriction	75
	4.4.1 Dose-respon	-	76
		e of bronchoconstriction	78
		ts of airways responsiveness	79
	Problems		81
5	Nonlinear single-compart	ment models	82
	5.1 Flow-dependent res	istance	82
	5.2 Volume-dependent	elastance	85
	5.2.1 Nonlinear p	ressure-volume relationships	85
	5.2.2 Mechanisms	s of elastic nonlinearity	87
	5.3 Choosing between	competing models	91
	5.3.1 The <i>F</i> -ratio	test	93
	5.3.2 The Akaike	criterion	95
	Problems		95
6	Flow limitation		97
	6.1 FEV ₁ and FVC		97
	6.2 Viscous mechanism	15	98

	6.3	Bernoulli effect	99
	6.4	Wave speed	101
		Problems	106
7	Linea	ar two-compartment models	108
	7.1	Passive expiration	108
	7.2	Two-compartment models of heterogeneous ventilation	109
		7.2.1 The parallel model	111
		7.2.2 The series model	114
		7.2.3 Electrical analogs	116
	7.3	A model of tissue viscoelasticity	117
	7.4	Stress adaptation and frequency dependence	119
	7.5	Resolving the model ambiguity problem	122
	7.6	Fitting the two-compartment model to data	124
		Problems	126
8	The (127	
	8.1	Linear systems theory	127
		8.1.1 Linear dynamic systems	128
		8.1.2 Superposition	130
		8.1.3 The impulse and step responses	130
		8.1.4 Convolution	133
	8.2	The Fourier transform	135
		8.2.1 The discrete and fast Fourier transforms	135
		8.2.2 The power spectrum	140
		8.2.3 The convolution theorem for Fourier transforms	140
	8.3	Impedance	142
		8.3.1 The forced oscillation technique	143
		8.3.2 A word about complex numbers	145
		8.3.3 Signal processing	146
		Problems	148
9	Inver	150	
	9.1	Equations of motion in the frequency domain	150
	9.2	Impedance of the single-compartment model	151
		9.2.1 Resonant frequency and inertance	152
		9.2.2 Regional lung impedance	156
	9.3	Impedance of multi-compartment models	158
		9.3.1 The viscoelastic model	158
		9.3.2 Effects of ventilation heterogeneity	159
		9.3.3 The six-element model	162
		9.3.4 Transfer impedance	164
	9.4	Acoustic impedance	166
		Problems	168

10	Const	tant phase model of impedance	169
	10.1	Genesis of the constant phase model	169
		10.1.1 Power-law stress relaxation	170
		10.1.2 Fitting the constant phase model to lung impedance	172
		10.1.3 Physiological interpretation	174
	10.2	Heterogeneity and the constant phase model	175
		10.2.1 Distributed constant phase models	176
		10.2.2 Heterogeneity and hysteresivity	177
	10.3	The fractional calculus	181
	10.4	Applications of the constant phase model	183
		Problems	186
11	Nonlinear dynamic models		188
	11.1	Theory of nonlinear systems	188
		11.1.1 The Volterra series	188
		11.1.2 Block-structured nonlinear models	189
	11.2	Nonlinear system identification	190
		11.2.1 Harmonic distortion	191
		11.2.2 Identifying Wiener and Hammerstein models	193
	11.3	Lung tissue rheology	193
		11.3.1 Quasi-linear viscoelasticity	194
		11.3.2 Power-law stress adaptation	195
		Problems	200
12	Epilo	gue	201
	Refer	ences	207
	Index		