CONTENTS

PART ONE Why Do Plant Secondary Metabolites Affect Human Brain Function?

1	From Shamans to Starbucks	3
	A Brief History of Psychoactive Plants and Fungi	6
	Antiquity	6
	Middle Ages (5th to 15th Centuries)	10
	Renaissance and the Age of Discovery	11
	The Modern Era	19
	What Does It All Mean?	23
2	Secondary Metabolites and the Life of Plants	24
	The Evolution of Plants and Insects	25
	The Evolution of the Synthesis of Secondary Metabolites	28
	The Co-evolution of Secondary Metabolites and Insects	31
	The Role of Secondary Metabolites in the Life of Plants	34
	Defense Against Herbivory	35
	Attraction	36
	Plant-Microbe Symbiotic Chemical Interactions	39
	Plant-Plant Chemical Interactions	39
	Defense Against Microbes and Other Stressors	41
	A Word About Secondary Metabolite Synthetic Pathways	41
	Summary	43
3	More Alike Than We Are Unalike—Why Do Plant Chemicals	
	Affect the Human Brain?	44
	The Similarities Between Plants and Animals	45
	Receptors and Signaling Cascades	45
	Mammalian Neurotransmitters, Neurochemicals,	
	and Receptors?	47
	Plant Secondary Metabolites?	51
	Immune and Stress Responses	52
	Molecular Clocks	54
	Similarities in the Insect and Human Central Nervous Systems	55
	Neurochemicals and Receptors	56
	Insect Models of Human Systems and Behavior	59
	Why Do Plant Secondary Metabolites Affect Human Brain	
	Function?	60

viii Contents

PART TWO **The Alkaloids**

4	Alkaloids and the Lives of Plants and Humans	65
	Structures and Synthesis	66
	Evolution of Alkaloid Synthesis	67
	Ecological Roles of Alkaloids	69
	Defense Against Herbivory	69
	Antimicrobial Properties	71
	Allelopathic Properties	71
	Modes of Action	72
	Modes of Action Related to Brain Function	72
	Alkaloids Derived from L-phenylalanine/L-tyrosine	73
	Alkaloids Derived from L-tryptophan	75
	Alkaloids Derived from Purine	77
	Alkaloids with Activity Unrelated to Common Precursors	78
	Alkaloids as Neuropharmacological Probes	79
	Alkaloids and the Insect Nervous System	80
	Some Conclusions	85
5	The Rewarding or Addictive Drugs	86
	Morphine	87
	Ecological Roles of Opiates and Brain Function	90
	The Psychostimulants (Cocaine, Ephedrine, Cathinone,	
	Amphetamine, Methamphetamine)	90
	Cocaine	92
	Ephedrine	93
	Amphetamine/Methamphetamine	94
	Cathinone	95
	Ecological Roles of Psychostimulant Secondary	
	Metabolites and Brain Function	96
	Caffeine	97
	Ecological Roles of Caffeine and Brain Function	100
	The Paradox of Drug Reward	101
6	The Hallucinogens	104
	A Common Mechanism of Action?	105
	Ecological Roles of Hallucinogens—Some General	
	Observations	107
	The Phenethylamines	108
	Mescaline (3,4,5-Trimethoxy-phenethylamine)	108
	Ergot Alkaloids: Lysergic Acid Derivatives	111
	Lysergic Acid Diethylamide (LSD)	112
	Lysergic Acid Amide	113
	Ecological Roles of Ergot Alkaloids and Brain Function	115
	Simple Tryptamines	116
	Psilocybin/Psilocin	116

	Conter	nts = ix
	Dimethyltryptamine and Derivatives	119
	Ibogaine	122
	Ecological Roles of Simple Tryptamines and Brain Function	123
7	The Deliriants—The Nightshade (Solanaceae) Family	125
	Nicotine	126
	Ecological Roles of Nicotine and Brain Function	129
	Hyoscyamine, Scopolamine, and Atropine	131
	Ecological Roles of the Tropane Alkaloids	
	and Brain Function	136
	The antidote to Hyoscyamine, Scopolamine, and Atropine:	
		137
PART	THREE The Phenolics	
8	Phenolics and the Lives of Plants and Animals	143
· ·	Phenolics in the Life of Plants—Ecological Roles	146
	Phenolics in the Life of Humans	149
	What Have the Plants Ever Done for Us?—Vitamins	153
	Why Do Polyphenols Have Beneficial Effects on Human	
	Brain Function?	156
	Similarities in Hormonal Stress Signaling Between	
	Plants and Animals	156
	The Plant Signaling Roles of Polyphenols	158
	Cross-Kingdom Signaling Between Plants and Humans	
	by Polyphenols and Other Phenolics	160
	What Relevance Does This Have to the Effects	
	of Polyphenols on Human Brain Function?	164
	Some Conclusions	166
9	Phenolics and the Human Brain	168
	Mechanisms of Action—Flavonoids	168
	Cognitive Function	168
	Neuroinflammation and Neuroprotection	170
	Flavonoids, Other Polyphenols, and Human Brain Function	171
	Flavanols	171
	Anthocyanins	175
	Isoflavones (and Other) Phytoestrogens	176
	Non-flavonoid Polyphenols	179
	Resveratrol	179
	Curcumin	181
	Phenolic Acids	181
	Atypical Phenolics	182
	Kavalactones (from <i>Piper methysticum</i>)	182
	Hypericum perforatum (St. John's Wort)	183
	Intervention Studies with Phenolics: Some Conclusions	184

x ■ Contents

	and the Human Brain Unintentional Cross-Kingdom Signaling? Unintended Targets of Intentional Cross-Kingdom	185 185
	Signaling? And Finally, a Few More Conclusions	186 189
PART	FOUR The Terpenes	
10	Terpenes and the Lives of Plants and Animals	193
	Terpenes and the Lives of Plants:—Ecological Roles	195
	Defense	195
	Attraction	200
	Terpenes and the Lives of Humans	203
	Terpenes and Human Brain Function	205
	Some Conclusions	209
11	The Lamiaceae Subtribe Salviinae—The Salvia, Rosmarinus,	
	and Melissa Genera	210
	The Salvia genus: Sage	212
	European Sage: Salvia officinalis and Salvia	
	lavandulaefolia	212
	Salvia divinorum	214
	Some Other Salvia Species	218
	Melissa officinalis (Lemon Balm)	219
	Rosmarinus officinalis	221
	Ecological Roles of the Salviinae Terpenes and Brain	222
	Function	223
	Some Conclusions	225
12	Cannabis and the Cannabinoids	227
	Cannabis and Reward	233
	The Ecological Roles of Cannabinoids and Brain Function	234
13	Some Miscellaneous Terpenes	237
	The Adaptogens—Modified Triterpenes from the <i>Panax</i> ,	
	Withania, and Bacopa Genera	237
	The Panax Genus—Panax ginseng, Panax quinquefolius	239
	Withania somnifera	241
	Bacopa monnieri	243
	Ecological Roles of the Terpene Adaptogens	
	and Brain Function	244
	Ginkgo biloba	247
	Ecological Roles of Ginkgolides and Bilobalide	
	and Brain Function	250

Con	tents ■ xi
(Valerian)	251
Ecological Roles of Valerian Secondary Metabolites and	
Brain Function	252
14 In Conclusion: Comparing and Contrasting the Alkaloids,	
Phenolics, and Terpenes	253
Future Directions?	260
References	263
Index	345