Contents This report is the collective work of all the members of the Task Force. Authors of the final draft of each chapter are given below. | Forew | ord | XV | |--------------------|---|-------------| | Terms of Reference | | | | Task F | Force Membership | xvii | | | troduction to Early Life and Later Disease | 1 | | | r Siân Robinson | _ | | 1. | | 1 | | | 1.1.1 Nutrition and the early environment | 1 | | | 1.1.2 Variations in growth and development | 2
3
3 | | 1. | • | 3 | | | 1.2.1 Animal studies | 3 | | | 1.2.2 Evidence from human populations | 3 | | | 1.2.3 The interaction of fetal and postnatal experience and adult disease | 5 | | | 1.2.4 Vulnerability to stressors acting in adult life | 6 | | 1 | 3 Biological mechanisms | 7 | | | 1.3.1 Fetal programming | 7 | | | 1.3.2 Developmental plasticity | 8 | | 1. | 4 Nutrition of mothers and children | 8 | | | 1.4.1 Observational studies of maternal diet | 9 | | | 1.4.2 Supplementation studies | 9 | | | 1.4.3 Maternal body composition | 10 | | | 1.4.4 Postnatal nutrition | 10 | | 1. | Nutrition of young women today | 11 | | 1. | | 11 | | 1. | • 1 | 12 | | 2 N | ormal Growth and Development | 13 | | | rofessor J. Harry McArdle, Dr Laura A. Wyness and Dr Lorraine Gambling | | | 2. | | 13 | | 2. | | 13 | vi Contents | | | 2.2.1 Embryonic period | 13 | |---|--------|--|----| | | | 2.2.2 The placenta | 16 | | | 2.3 | Embryo development | 16 | | | 2.4 | Fetal development | 16 | | | | 2.4.1 Normal fetal growth | 16 | | | | 2.4.2 Vulnerable periods: 'critical windows' | 17 | | | | 2.4.3 Mobilisation of maternal stores to protect the fetus | 17 | | | | 2.4.4 Placental glucose transport | 17 | | | 2.5 | Fetal development overview | 18 | | | 2.0 | 2.5.1 The heart | 18 | | | | 2.5.2 Brain development | 18 | | | | 2.5.3 The lungs | 18 | | | | 2.5.4 Bone | 19 | | | | 2.5.5 Muscle | 20 | | | | 2.5.6 The liver | 20 | | | | 2.5.7 The pancreas | 20 | | | | 2.5.8 The kidneys | 21 | | | | 2.5.9 Haematopoietic tissue | 21 | | | | 2.5.10 Adipose tissue | 21 | | | | 2.5.10 Adipose tissue 2.5.11 Sex hormone development | 21 | | | | 2.5.11 Sex normone development 2.5.12 Immune system development | 22 | | | 2.6 | • | 22 | | | 2.7 | Birthweight Postnatal growth and development | 24 | | | 2.7 | | | | | | Growth monitoring (growth charts) | 24 | | | 2.9 | Secular growth trends | 25 | | | | 2.9.1 Secular change in birthweight | 25 | | | 2.10 | 2.9.2 Secular change in height | 25 | | | 2.10 | Canalisation, catch-up and catch-down growth | 25 | | | 2.11 | Key points | 26 | | | 2.12 | Recommendations for future research | 27 | | | 2.13 | Key references | 27 | | 3 | | nal Nutrition and Infant Feeding: Current Practice and Recommendations | 28 | | | Dr Ali | son M. Lennox, Professor Judith L. Buttriss and Helena J. Gibson-Moore | | | | 3.1 | Introduction | 28 | | | 3.2 | Characteristics of pregnant women in the UK | 28 | | | | 3.2.1 Changing age profile of mothers | 28 | | | | 3.2.2 Birth spacing | 31 | | | | 3.2.3 Ethnic minority groups | 32 | | | 3.3 | Current practice and recommendations: pre-pregnancy | 32 | | | | 3.3.1 The importance of pre-pregnancy nutrient status and weight | 32 | | | | 3.3.2 Recommendations for pre-pregnancy | 33 | | | | 3.3.3 Current dietary practices among women prior to pregnancy | 34 | | | 3.4 | Current practice and recommendations: during pregnancy | 35 | | | | 3.4.1 Recommendations for pregnancy | 35 | | | | 3.4.2 Current practice during pregnancy | 39 | | | 3.5 | Current practice and recommendations: lactation | 41 | | | | 3.5.1 Recommendations for lactation | 41 | | | | 3.5.2 Current practice during lactation | 41 | | | 3.6 | Infant feeding: issues relating to evidence base | 42 | | | | | | | 3.7 | Current practice and recommendations: breastfeeding | 43 | | |------|---|----------|--| | | 3.7.1 Benefits of breastfeeding | 43 | | | | 3.7.2 Recommendations for breastfeeding: historical perspective and evidence base | 43 | | | | 3.7.3 Breastfeeding: current practice | 45 | | | 3.8 | Current practice and recommendations: formula feeding | 50 | | | | 3.8.1 Composition of infant formulas | 50 | | | | 3.8.2 Feeding infant formula | 52 | | | | 3.8.3 Formula feeding: current practice | 53 | | | 3.9 | Current practice and recommendations: weaning/complementary feeding | 53 | | | 0., | 3.9.1 Recommendations: timing of introduction of complementary foods | 53 | | | | 3.9.2 Current practice of timing of introduction of complementary foods | 55 | | | | 3.9.3 Development of taste preferences and the importance of texture | 58 | | | | 3.9.4 Baby-led weaning | 59 | | | | 3.9.5 Recommendations: specific food types | 60 | | | | 3.9.6 Recommendations: important nutrients to include in the weaning diet | 61 | | | | 3.9.7 Current practice: types of food/drink introduced | 62 | | | | 3.9.8 Vegetarian diets | 65 | | | | 3.9.9 Vegan diets | 66 | | | | 3.9.10 Foods to avoid during introduction of solids | 66 | | | | 3.9.11 Current practice: foods avoided during introduction of solids | 66 | | | 3.10 | Allergy | 67 | | | 3.10 | 3.10.1 Development of allergies | 67 | | | | 3.10.2 Peanut allergy | 67 | | | | 3.10.2 Coeliac disease | 67 | | | | 3.10.4 Cows' milk protein allergy | 68 | | | 3.11 | Conclusions | 68 | | | 3.11 | Key points | 69 | | | 3.12 | Recommendations for future research | 70 | | | 3.13 | Key references | 70 | | | | ndix 3.1: Historical perspective on breastfeeding and artificial feeding | 70 | | | Appe | Breastfeeding | 71 | | | | Artificial infant formula | 73 | | | | Artificial infant formula | /3 | | | Mach | anisms and Pathways of Critical Windows of Development | 75 | | | | rsor Harry J. McArdle and Dr Lorraine Gambling | 13 | | | 4.1 | Introduction | 75 | | | 4.2 | Embryo stages | 75 | | | 4.3 | Development of placenta | 75 | | | 4.4 | Nutritional programming: the effect of nutrition on fetal development | 77 | | | 4.4 | 4.4.1 Severe effects of micronutrient deprivation in pregnancy | 77 | | | | | 78 | | | | * | | | | 15 | 4.4.3 Experimental models for the study of poor nutrition on fetal development | 80 | | | 4.5 | Potential mechanisms of nutritional programming | 80 | | | | 4.5.1 Disruption of organ development | 81 | | | | 4.5.2 Disruption of the endocrine environment | 81 | | | | 4.5.3 Epigenetics | 83 | | | | 4.5.4 Telomere length | 84 | | | 4.0 | 4.5.5 The gatekeeper hypothesis | 84 | | | 4.6 | Conclusions | 84
85 | | | 4.7 | 7 Key points 8 | | | viii Contents | | 4.8 | Recommendations for future research | 85 | |---|---|--|-----| | | 4.9 | Key references | 85 | | 5 | Perinatal Effects of Sex Hormones in Programming of Susceptibility to Disease | | | | | | sor Richard M. Sharpe | | | | 5.1 | Introduction | 86 | | | 5.2 | Timing of masculinisation and its body-wide effects | 86 | | | 5.3 | Disorders of masculinisation | 87 | | | 5.4 | Male-female differences in disease risk: the potential role of perinatal androgens | 88 | | | 5.5 | Fetal growth, susceptibility to intrauterine growth restriction and its | | | | | long-term consequences, including timing of puberty | 88 | | | 5.6 | Growth hormone-insulin-like growth factor-I axis | 90 | | | 5.7 | Brain and behavioural effects | 90 | | | 5.8 | Sex differences in eating disorders, neuronal mechanisms and | | | | | adipose tissue distribution | 90 | | | | 5.8.1 Eating disorders | 90 | | | | 5.8.2 Kisspeptin system | 91 | | | | 5.8.3 Dietary preferences | 91 | | | | 5.8.4 Body fat distribution | 91 | | | 5.9 | Cardiovascular disease/hypertension | 92 | | | 5.10 | Kidney disease/hypertension | 92 | | | 5.11 | The immune system | 93 | | | 5.12 | Lung development and disease risk | 93 | | | 5.13 | Effects of maternal diet/obesity and infant feeding choices | 93 | | | 5.14 | 'Fetal programming' and epigenetic mechanisms | 95 | | | 5.15 | Conclusions | 95 | | | 5.16 | Key points | 95 | | | 5.17 | Recommendations for future research | 96 | | | 5.18 | Key references | 96 | | 6 | Neuro | logical Development | 97 | | | Profes | sor Julian G. Mercer | | | | 6.1 | Introduction | 97 | | | | 6.1.1 The vulnerability of the developing brain | 97 | | | | 6.1.2 Mechanistic studies in animal models | 97 | | | | 6.1.3 Levels of nutritional effect | 98 | | | | 6.1.4 Environments | 98 | | | 6.2 | The developing brain | 99 | | | | 6.2.1 Timing | 99 | | | | 6.2.2 Human brain development | 99 | | | | 6.2.3 Pregnancy outcome | 100 | | | 6.3 | Brain energy balance circuits and peripheral feedback signals | 101 | | | | 6.3.1 Background | 101 | | | | 6.3.2 Structures and development | 101 | | | <i>c</i> 4 | 6.3.3 Hormonal feedback | 104 | | | 6.4 | Nutritional influences on the developing brain | 106 | | | | 6.4.1 Risk factors | 106 | | | | 6.4.2 Global over-nutrition | 107 | | | | 6.4.3 Global under-nutrition | 108 | | | | 6.4.4 Micronutrient deficiency | 109 | | | | | | | Contents | ix | |----------|----| |----------|----| | | 6.5 | Programming mechanisms 6.5.1 Glucocorticoids 6.5.2 Epigenetics | 110
110
111 | |---|------------|---|--| | | 6.6 | Nutritional interventions | 111 | | | 6.7 | Conclusions | 113 | | | 6.8 | Key points | 113 | | | 6.9 | Recommendations for future research | 115 | | | 6.10 | Key references | 115 | | 7 | | lishing of Gut Microbiota and Bacterial Colonisation of the Gut in Early Life nne L. McCartney | 116 | | | 7.1 | Introduction | 116 | | | | 7.1.1 Investigating gut microbiota | 116 | | | | 7.1.2 Human gut microbiota | 117 | | | 7.2 | Acquisition of the gut microbiota | 117 | | | 7.3 | Factors affecting the infant gut microbiota (acquisition and development) | 118 | | | | 7.3.1 Gestational age | 118 | | | | 7.3.2 Mode of delivery | 119 | | | | 7.3.3 Host genetics | 119 | | | | 7.3.4 Geography and/or lifestyles | 119 | | | | 7.3.5 Diet | 120 | | | 7.4 | The gut microbiota of exclusively milk-fed infants | 120 | | | 7.5 | The effects of weaning on the infant gut microbiota | 123 | | | 7.6 | Potential long-term effects: implications for obesity | 128 | | | 7.7 | Conclusions | 128 | | | 7.8 | Key points | 128 | | | 7.9 | Recommendations for future research | 129 | | | 7.10 | Key references | 129 | | 8 | Nutri | tion and Development: Obesity | 130 | | | Profe. | ssor Lucilla Poston | | | | 8.1 | Introduction | 130 | | | 8.2 | Inadequate in utero nutrition: a risk factor for obesity in later life? | 130 | | | | 8.2.1 Evidence from human population studies | 130 | | | | 8.2.2 Early postnatal 'catch-up' growth and obesity risk | 131 | | | | 8.2.3 Exposure to famine during gestation | 132 | | | 8.3 | Breastfeeding and risk of obesity in later life | 132 | | | 8.4 | Maternal diabetes and obesity: early life determinants of offspring obesity? | 132 | | | | 0.4.1 | 133 | | | | 8.4.1 Association of higher birthweight with offspring adiposity | 133 | | | | 8.4.1 Association of higher birthweight with offspring adiposity 8.4.2 Maternal diabetes | 133 | | | | | | | | | 8.4.2 Maternal diabetes | 133 | | | 8.5 | 8.4.2 Maternal diabetes8.4.3 Maternal obesity: a determinant of offspring obesity? | 133
134 | | | 8.5 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity | 133
134
135 | | | 8.5 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? | 133
134
135
135 | | | 8.5 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight | 133
134
135
135
135 | | | 8.5 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight 8.5.2 Reducing infant postnatal weight gain | 133
134
135
135
135
135 | | | | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight 8.5.2 Reducing infant postnatal weight gain 8.5.3 Formula feed composition | 133
134
135
135
135
135
136 | | | 8.6 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight 8.5.2 Reducing infant postnatal weight gain 8.5.3 Formula feed composition Interventions in pregnant diabetic women | 133
134
135
135
135
135
136
136 | | | 8.6 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight 8.5.2 Reducing infant postnatal weight gain 8.5.3 Formula feed composition Interventions in pregnant diabetic women Interventions in obese pregnant women | 133
134
135
135
135
135
136
136 | | | 8.6
8.7 | 8.4.2 Maternal diabetes 8.4.3 Maternal obesity: a determinant of offspring obesity? 8.4.4 Gestational weight gain and offspring adiposity Interventions to reduce offspring obesity? 8.5.1 Reducing low birthweight 8.5.2 Reducing infant postnatal weight gain 8.5.3 Formula feed composition Interventions in pregnant diabetic women Interventions in obese pregnant women 8.7.1 Other modifiable factors which may contribute to offspring obesity | 133
134
135
135
135
136
136
137 | x Contents | | | 8.8.3 Maternal obesity | 139 | |----|--------|--|------------| | | | 8.8.4 Neonatal overfeeding | 139 | | | 8.9 | A central role for disturbance in pathways of appetite regulation | 139 | | | | 8.9.1 Fetal and neonatal hyperinsulinaemia | 139 | | | | 8.9.2 Fetal and neonatal hyperleptinaemia | 140 | | | | 8.9.3 Maternal obesity | 140 | | | | 8.9.4 Cellular pathways of energy metabolism | 140 | | | | 8.9.5 Mechanisms underlying persistent modification of gene expression | 140 | | | 8.10 | Conclusions | 141 | | | 8.11 | Key points | 141 | | | 8.12 | Recommendations for future research | 142 | | | 8.13 | Key references | 142 | | 9 | Nutrit | ion and Development: Type 2 Diabetes | 143 | | | Dr Su | san E. Ozanne | | | | 9.1 | Introduction | 143 | | | 9.2 | Relationships between birthweight and type 2 diabetes | 144 | | | | 9.2.1 Low birthweight and type 2 diabetes | 144 | | | | 9.2.2 High birthweight and type 2 diabetes | 144 | | | 9.3 | Postnatal growth | 144 | | | 9.4 | Evidence for the role of early nutrition in humans influencing type 2 diabetes risk | 145 | | | | 9.4.1 During pregnancy | 145 | | | o = | 9.4.2 During lactation | 145 | | | 9.5 | Evidence for the role of early nutrition in animal models influencing type 2 diabetes risk | 145 | | | | 9.5.1 Models of under-nutrition | 145 | | | | 9.5.2 Models of over-nutrition | 146 | | | 0.6 | 9.5.3 Underlying mechanisms | 147 | | | 9.6 | Conclusions | 148 | | | 9.7 | Key points | 148 | | | 9.8 | Recommendations for future research | 149 | | | 9.9 | Key references | 149 | | 10 | | ion and Development: Cardiovascular Disease | 150 | | | | ul D. Taylor and Professor Thomas A. B. Sanders | | | | 10.1 | Introduction | 150 | | | 10.2 | Evidence-based on clinical endpoints | 151 | | | 10.3 | Postnatal growth | 152 | | | 10.4 | Programming of atherosclerosis | 153 | | | 10.5 | Programming of blood pressure | 157 | | | 10.6 | Animal models of nutritional manipulation in early life | 158 | | | | 10.6.1 Mechanisms of hypertension in animal models of under-nutrition | 159 | | | | 10.6.2 Cardiovascular dysfunction in animal models of over-nutrition | 160
161 | | | 10.7 | 10.6.3 Developmental programming of cardiac function Conclusions | 162 | | | 10.7 | Key points | 162 | | | 10.8 | Recommendations for future research | 162 | | | 10.9 | Key references | 163 | | | | · | | | 11 | | ion and Development: Cancer | 164 | | | | ssor Paul Haggarty and Professor Steven Darryll Heys | 17 | | | 11.1 | Cancer hiology | 164
165 | | | 11/ | VALUE DUDIONAL | 113 | | ~ | • | |----------|-----| | Contents | X1 | | Contents | 111 | | | 11.3 | Evidence linking early nutrition to cancer | 166 | |----|--------|--|------| | | | 11.3.1 Interventions | 166 | | | | 11.3.2 Breast versus bottle feeding | 167 | | | | 11.3.3 Famine | 167 | | | | 11.3.4 Birth anthropometry | 167 | | | | 11.3.5 Childhood anthropometry and growth | 168 | | | | 11.3.6 Adult stature and body composition | 168 | | | 11.4 | Possible mechanisms linking early nutrition to cancer risk | 168 | | | | 11.4.1 Genotype | 168 | | | | 11.4.2 Epigenotype | 170 | | | | 11.4.3 Phenotype | 172 | | | 11.5 | Conclusions | 174 | | | 11.6 | Key points | 175 | | | 11.7 | Recommendations for future research | 175 | | | 11.8 | Key references | 176 | | 12 | Nutrit | ion and Development: Bone Health | 177 | | | | cki Quincey, Professor Elaine Dennison, Professor Cyrus Cooper and | | | | Dr Nie | cholas C. Harvey | | | | 12.1 | Early life origins of osteoporosis | 177 | | | | 12.1.1 Osteoporosis epidemiology | 177 | | | | 12.1.2 Normal development of bone size and volumetric density | 177 | | | | 12.1.3 Tracking of growth | 178 | | | | 12.1.4 Peak bone mass and risk of fracture | 180 | | | | 12.1.5 Early influences on bone development | 180 | | | 12.2 | Maternal nutrition in pregnancy | 180 | | | | 12.2.1 The role of maternal vitamin D | 180 | | | | 12.2.2 Vitamin D intervention studies in pregnancy | 181 | | | | 12.2.3 Safety of vitamin D supplementation in pregnancy | 182 | | | | 12.2.4 Calcium nutrition in pregnancy | 183 | | | | 12.2.5 Polyunsaturated fatty acids and bone metabolism | 184 | | | 12.3 | Postnatal calcium and vitamin D nutrition | 184 | | | | 12.3.1 Calcium nutrition in infancy | 184 | | | | 12.3.2 Vitamin D nutrition in infancy | 185 | | | 12.4 | Calcium and vitamin D nutrition in older children | 186 | | | 12.5 | Vitamin D: problems with defining normality | 186 | | | 12.6 | Physical activity and bone health in childhood | 188 | | | 12.7 | Conclusions | 189 | | | 12.8 | Key points | 189 | | | 12.9 | Recommendations for future research | 190 | | | 12.10 | Key references | 190 | | 13 | Nutrit | ion and Development: Asthma and Allergic Disease | 191 | | | | sor Graham S. Devereux and Dr Nanda Prabhu | -271 | | | 13.1 | Introduction | 191 | | | 13.2 | Pathogenesis | 191 | | | 13.3 | Increasing prevalence of asthma and allergic disease | 193 | | | 13.4 | Impact of asthma and allergic disease | 193 | xii Contents | | 13.5 | Import | ance of antenatal and early life influences on asthma and allergic disease | 194 | |----|---------|-----------|---|-----| | | | 13.5.1 | Birth anthropometry | 194 | | | | 13.5.2 | Neonatal lung function and asthma | 194 | | | | 13.5.3 | Neonatal immunology | 195 | | | 13.6 | Matern | al dietary food allergen intake during pregnancy and breastfeeding | 195 | | | | 13.6.1 | Fetal allergen exposure | 196 | | | | 13.6.2 | Cord blood mononuclear cell responses and maternal exposure to allergen | 196 | | | | 13.6.3 | Cord blood mononuclear cell responses and subsequent allergic disease | 197 | | | | 13.6.4 | Observational and intervention studies of maternal diet during pregnancy | | | | | | and lactation | 197 | | | 13.7 | Breastf | eeding and childhood atopic dermatitis and asthma | 198 | | | 13.8 | | dietary food allergen intake | 198 | | | 13.9 | Early li | fe nutrient intake | 199 | | | | 13.9.1 | Antioxidant hypothesis | 199 | | | | | Polyunsaturated fatty acids hypothesis | 200 | | | | | Vitamin D hypotheses | 200 | | | | 13.9.4 | Maternal antioxidant status during pregnancy and childhood asthma | | | | | | and allergy | 201 | | | | 13.9.5 | Early life polyunsaturated fatty acid status and childhood asthma and allergy | | | | | | Early life vitamin D status and childhood asthma and allergy | 202 | | | | | Early life nutrient intake and childhood asthma and allergic disease | 202 | | | 13.10 | | and childhood asthma and allergic disease | 203 | | | 13.11 | Conclu | | 203 | | | 13.12 | Key po | | 204 | | | 13.13 | | mendations for future research | 204 | | | 13.14 | Key ref | erences erences | 205 | | 14 | Nutriti | ion and I | Development: Early Nutrition, Mental Development and Mental Ageing | 206 | | 14 | | | cus Richards, Dr Alan Dangour and Professor Ricardo Uauy | 200 | | | 14.1 | | portance of mental development and ageing | 206 | | | 14.2 | | al diet during pregnancy | 207 | | | 14.3 | Breastf | | 209 | | | 17.5 | | Breastfeeding and cognitive development | 209 | | | | | Long-term cognitive effects of breastfeeding | 210 | | | | | Breastfeeding and cognitive development: a caveat | 211 | | | | | Infant feeding and the central nervous system | 211 | | | | | Breastfeeding and behavioural development | 211 | | | | | Optimal duration of breastfeeding | 212 | | | 14.4 | | eaning diet | 212 | | | 17.7 | | Dietary patterns at the macro level | 213 | | | | | Iron status in childhood | 213 | | | | | Food intolerance and mental development: additives and preservatives | 213 | | | 14.5 | Conclu | | 213 | | | 14.6 | Key po | | 213 | | | 14.7 | | mendations for future research | 215 | | | 14.8 | | Serences | 215 | | | | • | | | | 15 | | | ence into Practice: Public Health Implications | 216 | | | | | h L. Buttriss, Sara A. Stanner and Professor Thomas A. B. Sanders | 21/ | | | 15.1 | Introdu | | 216 | | | | 15.1.1 | Critical windows | 216 | | | | 15.1.2 | Endocrine system development | 217 | | | 15.1.3 Neurological development | 21 | | |-------|---|------------|--| | | 15.1.4 Gut flora | 213 | | | 15.2 | Summary of the Task Force's findings for various chronic conditions | 213 | | | | 15.2.1 Obesity | 213 | | | | 15.2.2 Type 2 diabetes | 222 | | | | 15.2.3 Cardiovascular disease | 223 | | | | 15.2.4 Cancer | 224 | | | | 15.2.5 Bone health | 22: | | | | 15.2.6 Allergic disease and asthma | 220 | | | | 15.2.7 Cognitive function/mental health and behaviour | 22 | | | 15.3 | Diet and lifestyle themes relevant to pregnancy and early life | 228 | | | | 15.3.1 Maternal body weight and energy balance | 228 | | | | 15.3.2 Macronutrients | 229 | | | | 15.3.3 Micronutrients | 230 | | | | 15.3.4 Alcohol | 239 | | | 15.4 | 15.3.5 Caffeine | 239 | | | 15.4 | Diet and lifestyle themes relevant to early feeding and weaning | 240 | | | | 15.4.1 Breastfeeding and use of breast milk substitutes | 240 | | | | 15.4.2 Weaning onto a family diet | 240 | | | 155 | 15.4.3 Catch-up growth and accelerated growth | 24 | | | 15.5 | Vulnerable groups | 242 | | | | 15.5.1 Women with poor diets | 242 | | | | 15.5.2 Pregnant adolescents | 242 | | | | 15.5.3 Ethnic minority groups | 24: | | | | 15.5.4 Lower socioeconomic groups | 244 | | | | 15.5.5 Smokers | 244 | | | 15.0 | 15.5.6 Obese women | 24: | | | 15.6 | Diet and lifestyle recommendations | 24: | | | 15.7 | Role of health professionals | 24' | | | 15.8 | Recommendations | 250 | | | | 15.8.1 Recommendations to policy makers | 250 | | | | 15.8.2 Recommendations to health professionals and other educators | 252 | | | | 15.8.3 Recommendations to the food industry | 254 | | | 15.0 | 15.8.4 Recommendations to researchers and funders | 254 | | | 15.9 | Key points | 254 | | | 15.10 | Key references | 25: | | | | usions of the Task Force | 250 | | | | Chapter 1 | 25 | | | 16.2 | Chapter 2 | 25°
258 | | | 16.3 | Chapter 3 | | | | 16.4 | Chapter 4 | | | | 16.5 | Chapter 5 | 259 | | | 16.6 | Chapter 6 | 259
260 | | | 16.7 | Chapter 7 | | | | 16.8 | Chapter 8 | | | | 16.9 | Chapter 9 | 260 | | | 16.10 | Chapter 10 | 26°
26° | | | 16.11 | Chapter 11 | | | | 16.12 | Chapter 12 | 26 | | | 16.13 | Chapter 13 | 26 | | xiv Contents | | 16.14
16.15 | Chapter 14 Chapter 15 | 262
263 | |------------|----------------|--|------------| | 17 | Pacam | mendations of the Task Force | 265 | | 1/ | 17.1 | Priorities for future research on current practice in relation to early life development | 265 | | | 17.1 | Priorities for future research on mechanisms and pathways of early life development | 265 | | | 17.2 | | 265 | | | | | 266 | | | | | 266 | | | | | | | | | 17.2.4 Cognitive and neurological development | 266
266 | | | 17.3 | 17.2.5 Establishing gut microbiota and bacterial colonisation of the gut in early life Priorities for future research: specific diseases | 267 | | | 17.5 | 17.3.1 Obesity | 267 | | | | 17.3.2 Diabetes | 267 | | | | 17.3.3 Cardiovascular disease | 267 | | | | 17.3.4 Cancer | 267 | | | | 17.3.5 Bone health | 268 | | | | 17.3.6 Allergic disease and asthma | 268 | | | | 17.3.7 Cognitive function | 268 | | | 17.4 | Recommendations to key stakeholders | 268 | | | 17.1 | 17.4.1 Recommendations to policy makers | 268 | | | | 17.4.2 Recommendations to health professionals and other educators | 270 | | | | 17.4.3 Recommendations to the food industry | 272 | | 18 | Nutriti | on and Development: Answers to Common Questions | 273 | | | 18.1 | Nutrition and development | 273 | | | 18.2 | Developmental programming hypotheses | 273 | | | 18.3 | Normal growth | 273 | | | 18.4 | How development occurs and factors that can affect it | 274 | | | 18.5 | Influences of perinatal sex hormone exposure on programming of disease susceptibility | 275 | | | 18.6 | Cognitive and neurological development | 276 | | | 18.7 | Influences of gut microbiota on programming of disease susceptibility | 276 | | | 18.8 | Obesity | 277 | | | 18.9 | Diabetes | 278 | | | 18.10 | Cardiovascular disease | 278 | | | 18.11 | Cancer | 279 | | | 18.12 | Bone health | 280 | | | 18.13 | Allergic diseases and asthma | 281 | | | 18.14 | Mental health and cognitive behaviour | 282 | | | 18.15 | Dietary and lifestyle advice for early life | 282 | | | 18.16 | Policies relating to early life nutrition and development | 286 | | Glo | ssary | | 287 | | References | | | 294 | | Inde | ex | | 342 |